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1 Topological Linear Spaces

Though Banach algebras are themselves normed linear spaces, the Gelfand rep-
resentation theorem involves a linear space which is not endowed with a norm,
so I will first make some comments concerning topological linear spaces.

Definition 1. Given a topological space (X, τ), a collection σ ⊂ τ is said to
be a sub-basis of τ if every element of τ is a union of finite intersections of
elements of σ.

Moreover, if we have an arbitrary collection σ of subsets of X, then the
collection of all unions of finite intersections of elements of σ, together with ∅
and X, is easily seen to form a topology of X (and, of course, σ is a sub-basis
for this topology).

Definition 2. Let X be any set, let Γ be an arbitrary index set and for each
γ ∈ Γ, let fγ be a mapping from X to a topological space (Xγ , τγ). Let F :=
{fγ : γ ∈ Γ}. Then the weak topology generated by F is the topology generated
by the sub-basis

σ = {f−1
γ (Uγ) : Uγ ∈ τγ(γ ∈ Γ)}

this topology is denoted by σ (X,F).

Remark 3. The importance of the weak topology is that it is the weakest
topology for which each of the functions fγ is continuous from (X, σ (X,F))
to (Xγ , τγ).

Definition 4. Let X be a normed linear space, X∗ its dual, X∗∗ its second dual
and for each x ∈ X let x̂ denote the corresponding element of X∗∗ as described in
lectures, then the weak-star topology σ(X∗, X) on X∗ is the topology generated
by the elements x̂.

Without proof, I will use the following results for a normed linear space X:

Theorem 5. The weak-star topology σ(X∗, X) is Hausdorff.

Theorem 6 (Alaoglu). The unit ball B(X∗) := {x ∈ X : ‖x‖ ≤ 1} is compact
in the weak-star topology.
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2 Banach Algebras

Banach algebras are a kind of Banach space which generalise the spaces of
bounded linear operators. Indeed, we have the following definition:

Definition 7. Let A be a complex Banach space. A is said to be a Banach
algebra if there is a multiplication defined on A such that ∀λ ∈ C and ∀x, y, z ∈
A,

1. x(yz) = (xy)z;

2. x(y + z) = xy + xz and (x + y)z = xz + yz;

3. λ(xy) = (λx)y = x(λy);

4. ‖xy‖ ≤ ‖x‖ ‖y‖;

Moreover, the Banach algebra is said to have a unit if ∃e ∈ A such that
∀x ∈ A, ex = xe = x and ‖e‖ = 1. The algebra is said to be commutative if
for any x, y ∈ A, xy = yx. I shall refer to commutative Banach algebras as CB
algebras.

Note an equivalent defintion of a Banach algebra is that it is a Banach space
which is also a ring, such that axioms (3) and (4) above hold.

Example 8. Given Banach spaces X and Y , the space B (X, Y ) consisting of
all bounded linear operators from X to Y is clearly a Banach algebra, where
multiplication is the ordinary composition of operators.

Example 9. If X is any Hausdorff space, then the space C (X) consisting of
all bounded continuous functions from X to C forms a CB algebra with a unit,
where multiplication is defined pointwise, and the norm is the sup norm. The
unit of this space is the function which is identically equal to 1. When I get to
the Gelfand representation theorem, an important algebra will be C (M), where
the space M is a compact Hausdorff space.

Definition 10. Let A be a Banach algebra with a unit and let x ∈ A. x is said
to be invertible if ∃x−1 ∈ A such that xx−1 = x−1x = e. I will use, without
proof, the fact that the set of invertible elements in A forms an open set of A.

3 Homomorphisms and Ideals

Definition 11. Let A be a CB algebra. A subspace J of A is said to be an ideal
of A if ∀x ∈ A and ∀j ∈ J , xj ∈ J . (More generally, if A is not commutative,
we require both xj ∈ J and jx ∈ J).

Definition 12. Let A and B be CB algebras. An linear operator φ : A → B is
said to be a homomorphism if ∀x, y ∈ A,φ(xy) = φ(x)φ(y).

Note that if x ∈ ker(φ) and if y ∈ A, then φ(xy) = φ(x)φ(y) = 0 · φ(y) = 0.
Hence ker (φ) is an ideal of A.
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Definition 13. Let A be a Banach algebra and J an ideal of A, then

• J is said to be proper if J 6= A

• If J is proper, then J is said to be maximal if for any proper ideal M ,
J ⊂ M ⇒ M = J .

Lemma 14. Let A be a Banach algebra with a unit and let J be a proper ideal
of A. Then J contains no invertible elements and is not dense in A. Moreover,
its closure J̄ is also a proper ideal of A.

Proof. Suppose x ∈ J and ∃x−1 ∈ A such that xx−1 = e. But J is an ideal,
hence e ∈ J and so ∀m ∈ A, m = em ∈ J . In which case J is not proper. For
the second part, we use the fact that the invertible elements of A form an open
set of A, together with the first part. For the last part, observe that for any
x ∈ A, the mapping y 7→ x · y is continuous on A, and that for any j ∈ J̄ , we
may write j = lim

n→∞
jn, where ∀n, jn ∈ J . Hence for any j ∈ J̄ and any x ∈ A,

x · j = x · lim
n→∞

jn = lim
n→∞

x · jn and the last quantity is in J̄ because J̄ is closed.

Consequently, J̄ is an ideal of A, and must be proper as J isn’t dense in A.

Corollary 15. Every maximal ideal is closed and every proper ideal is contained
in a maximal ideal.

Proof. Let J be a maximal ideal of A. Then by the previous theorem, we know
that J̄ is a proper ideal of A which contains J , but by maximality, J = J̄ . The
second part is proved by a standard Zorn’s lemma trick.

Of particular importance to the Gelfand representation theorem are the ho-
momorphisms into C, ie. the multiplicative linear functionals. First note the
following result about linear functionals:

Lemma 16. Let φ be a linear functional on a normed linear space X, then:

1. If φ is nonzero, then ker (φ) is a maximal subspace of X (ie. a maximal
element of the set of proper subspaces of X).

2. φ is continuous iff ker (φ) is closed.

3. If φ is a nonzero homomorphism, then φ(e) = 1.

Proof. Suppose φ is nonzero. This immediately gives ker (φ) 6= X, so ker (φ)
is certainly a proper subpace of X. Also Im (φ) is nonzero subspace of C,
so we have Im (φ) = C. By the first isomorphism theorem, X/ ker (φ) ∼= C.
Now suppose S is a subpace of X which contains ker (φ), but there exists a
1-1 correspondence between the subspaces of the quotient space X/ ker (φ) and
the subspaces of X which contain ker (φ), so if S 6= ker (φ), we must have
X/S = {0}, in which case S = X. Therefore ker (φ) must be maximal, as
required.
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Suppose φ is continuous. Let yn be a convergent sequence of elements of
ker (φ), say yn → y. But by continuity, 0 ≡ φ(yn) → φ (y), so φ (y) = 0, so
y ∈ ker (φ). Hence ker (φ) is closed.

Suppose ker (φ) is closed. I will prove that φ is continuous at 0, and hence
continuous on X. If φ ≡ 0, then there is nothing to prove, otherwise, Im(φ) = C,
hence ∀ε ∈ R,∃xε such that φ(xε) = ε. Define Kε = {x : φ (x) = ε}. Then
Kε = {x : φ(x − xε) = 0}, and so Kε = K0 + xε. But, by hypothesis, K0 is
closed, hence Kε is closed. Consequently, for each ε ∈ R, {x : φ (x) 6= ε} is open,
and

Uε := {x : |φ (x)| < ε} =
⋃
|δ|≥ε

{x : φ(x) 6= δ}

is also open. Hence φ is continous at 0.
For the last part, observe that φ(e) 6= 0 (otherwise ∀x ∈ X, φ(x) = φ(ex) =

φ(e)φ(x) = 0 · φ(x) = 0, making φ identically zero), hence φ(e) = φ(ee) =
φ(e)φ(e), and making use of the fact that C is a field, we have φ(e) = eC = 1.

Corollary 17. Let A be a Banach space with a unit, and φ : A → C a homo-
morphism, then φ is continuous and if φ 6= 0, then ‖φ‖ = 1.

Proof. ker (φ) is a maximal subspace, hence a maximal ideal, hence closed.
Thus φ is continuous. It is certainly the case that ‖φ‖ ≥ 1 as φ (e) = 1.
Suppose ‖φ‖ > 1 then ∃x ∈ A such that ‖x‖ ≤ 1 and φ(x) > 1 but for
all n, ‖xn‖ ≤ ‖x‖n ≤ 1, though φ(xn) = φ(x)n → ∞, but φ is bounded, a
contradiction.

3.1 A Spectral Result

An essential result I’ll need in showing that the Gelfand representation is norm-
decreasing is the following:

Theorem 18. Let A be a Banach algebra with a unit and φ : A → C is a
nonzero homomorphism, then ∀x ∈ A, φ (x) ∈ σ (x), where, by definition, the
spectrum σ(x) is given by σ(x) = {λ ∈ C : λe− x is not invertible}.

Proof. We have to show that φ(x)e−x is not invertible. Now φ(e)−x ∈ ker(φ),
but ker(φ) is a maximal subspace, hence contains no invertible elements.

We introduce the notion of the spectrum of an element of a unital Banach
algebra because it is related to the spectra of linear operators. Indeed, for each
x ∈ A, define a mapping Lx : A → A by Lx(y) = xy. It is easily seen that Lx is
a bounded linear operator on A, and that the mapping x 7−→ Lx is an isometric
isomorphism of A onto a closed subspace of B (A). In fact, the mapping is also
multiplicative, and also x is invertible if and only if Lx is invertible.

By the last statement, we have that σ(x) = σ(Lx).
We define the spectral radius rσ(x) = sup {|λ| : λ ∈ σ(x)}.

Lemma 19. For any x ∈ A, rσ(x) = lim
n→∞

‖xn‖1/n and rσ(x) ≤ ‖x‖.
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Proof. Using, without proof, the result that for a linear operator L, rσ(L) =
lim

n→∞
‖Ln‖1/n, we have that

rσ(x) = rσ(Lx) = lim
n→∞

‖(Lx)n‖1/n = lim
n→∞

‖Lxn‖1/n = lim
n→∞

‖xn‖1/n

But, because A is a Banach algebra, ‖xn‖ ≤ ‖x‖n, so rσ(x) ≤ ‖x‖.

4 The Gelfand Representation Theorem

The Gelfand representation theorem is an omnibus theorem concerning a map-
ping (the Gelfand representation) between a CB algebra A with a unit and an
associated algebra Â consisting of continuous functions on the so-called carrier
space M of A. Before we can state the theorem, some definitions are in order.

Definition 20. The carrier space M of A is the space of all nonzero multiplica-
tive linear functionals (ie. homomorphisms from A into the space of scalars),
endowed with the subspace topology which it inherits from the dual space A∗,
equipped with the weak-star topology.

Note that M truly is a subset of A∗, because every element of M is a bounded
linear functional, by Corollary 17.

Definition 21. For each x ∈ A, the Gelfand transform of x is the function
x̂ : M → C defined by x̂(φ) = φ(x) for all φ ∈ M.

By Remark 3, each function x̂ is continuous with respect to the weak-star
topology and again using Corollary 17, we have |x̂ (φ)| = |φ (x)| ≤ ‖φ‖ ‖x‖ =
‖x‖, that is, each function x̂ is also bounded, and hence each x̂ ∈ C (M), the
space of bounded continuous functions from M to C.

Theorem 22 (Gelfand Representation Theorem). Let A be a CB algebra with
a unit. Then

1. its carrier space M is a compact Hausdorff space.

2. ∀x ∈ A, x̂ is a continuous function on M and the space Â := {x̂ : x ∈ A}
is a closed subalgebra of the algebra C (M) of all continuous functions on
M.

3. The Gelfand representation x 7→ x̂ is a norm-decreasing homomorphism
onto Â.

4. ∀φ ∈ M, ê (φ) = 1.

5. Each constant function is contained in Â and Â separates the points of
M. (that is, ∀φ1, φ2 ∈ M with φ1 6= φ2, ∃x̂ ∈ Â, x̂(φ1) 6= x̂(φ2))

6. x̂ is invertible in C (M) iff x is invertible in A.
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7. ‖x̂‖∞ = lim
n→∞

‖xn‖1/n.

8. Â is isomorphic to A iff A is semisimple (that is, the intersection of all
maximal ideals of A is {0}).

Proof. We present the proof in a number of steps. First the fact that M is
compact and Hausdorff.

By Theorem 5, the weak-star topology is Hausdorff, hence any (topological)
subspace is also Hausdorff.

Now from Theorem 6, the unit ball B (A∗) is weak-star compact, but recall
that each element of M has unit norm (as a subset of A∗ with the operator
topology), so M ⊂ B (A∗), so we are left to show that M is closed (as a closed
subset of a compact set is compact). It suffices to show that if z ∈ M, then z is
a nonzero homomorphism.Fix x, y ∈ A and ε > 0. Define Uxyε by

Uxyε = {u ∈ A∗ : |(z − u)| (x) < ε, |(z − u)| (y) < ε, |(z − u)| (xy) < ε}

Uxyε is seen to be a weak-star neighbourhood of z, from which we deduce ∃φ ∈
M ∩ Uxyε. Therefore, as φ is multiplicative,

z(xy)− z(x)z(y) = [z(xy)− φ(xy)] + φ(x) [φ(y)− z(y)] + [φ(x)− z(x)] z(y)

so

|z(xy)− z(x)z(y)| ≤ ε + |φ(x)| ε + ε |z(y)|
< ε(1 + ‖φ‖ ‖x‖+ ‖z‖ ‖y‖)
< ε(1 + ‖x‖+ ‖y‖)

consequently, z(xy) = z(x)z(y). Also, by considering the neighbourhood Vε :=
{u ∈ A∗ : |(z − u)| (e) < ε}, and an element ξ ∈ M ∩ Vε,

z(e)− 1 = [z(e)− ξ(e)] + [ξ(e)− 1]
= z(e)− ξ(e)

so |z(e)− 1| < ε. and, z(e) = 1, implying that z is nonzero. So we’ve shown
that M is compact and Hausdorff.

Observe that ∀x, y ∈ A and ∀φ ∈ M,

x̂y (φ) = φ(xy) = φ(x)φ(y) = x̂ (φ) ŷ (φ)

so the Gelfand representation is multiplicative, and ∀α, β ∈ C,

̂αx + βy(φ) = φ(αx + βy) = αφ(x) + βφ(y) = αx̂ (φ) + βŷ (φ)

so is is also linear. In consequence, its image Â is a subalgebra of C (M).
To see it is norm-decreasing, note that

‖x̂‖ := sup
φ∈M

|x̂ (φ)| = sup
φ∈M

|φ(x)| ≤ ‖x‖
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for the last inequality, use results 18 and 19. So we’ve shown the second and
third parts

The fourth part is easy because ê (φ) = φ(e) = 1, as φ is assumed to be a
nonzero homomorphism.

For the fifth part, let λ ∈ C. Then ∀φ ∈ M, λ̂e(φ) = φ(λe) = λ, so each
constant function is contained in Â. Moreover, if ∀x ∈ A, x̂ (φ1) = x̂ (φ2) then
∀x ∈ A, φ1(x) = φ2(x), hence φ1 = φ2, so Â does indeed separate the points of
M.

Note that by the Stone-Weierstrass theorem, and from the first, second and
fifth parts of the theorem, Â = C (M). (This is precisely the conclusion of the
Stone-Weierstrass theorem).

The remainder of the proof is left as an exercise for the reader.

The importance of the Gelfand representation theorem is that it gives a
criterion for determining whether or not a given unital CB algebra is isomorphic
to an algebra of bounded continuous functions on a compact Hausdorff space.
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