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1 Topological Linear Spaces

Though Banach algebras are themselves normed linear spaces, the Gelfand rep-
resentation theorem involves a linear space which is not endowed with a norm,
so I will first make some comments concerning topological linear spaces.

Definition 1. Given a topological space (X, T), a collection o C 7 is said to
be a sub-basis of T if every element of T is a union of finite intersections of
elements of o.

Moreover, if we have an arbitrary collection o of subsets of X, then the
collection of all unions of finite intersections of elements of o, together with ()
and X, is easily seen to form a topology of X (and, of course, o is a sub-basis
for this topology).

Definition 2. Let X be any set, let I' be an arbitrary index set and for each
v €T, let fy be a mapping from X to a topological space (X, T,). Let F :=
{fy : v €T'}. Then the weak topology generated by F is the topology generated
by the sub-basis

0= {f'y_l (Uy): Uy € my(v€D)}
this topology is denoted by o (X, F).
Remark 3. The importance of the weak topology is that it is the weakest

topology for which each of the functions f., is continuous from (X,o (X,F))
to (Xy,7y).

Definition 4. Let X be a normed linear space, X* its dual, X** its second dual
and for each x € X let & denote the corresponding element of X** as described in
lectures, then the weak-star topology o(X™*, X) on X* is the topology generated
by the elements Z.

Without proof, I will use the following results for a normed linear space X:
Theorem 5. The weak-star topology o(X*, X) is Hausdorff.

Theorem 6 (Alaoglu). The unit ball B(X*) := {x € X : ||z|| < 1} is compact
in the weak-star topology.



2 Banach Algebras

Banach algebras are a kind of Banach space which generalise the spaces of
bounded linear operators. Indeed, we have the following definition:

Definition 7. Let A be a complex Banach space. A is said to be a Banach
algebra if there is a multiplication defined on A such that VA € C and Vx,y,z €
A,

1. a(yz) = (xy)z;

2. x(y+2z2)=axy+xz and (x+y)z = zz + yz;
3. May) = (A\z)y = z(A\y);

4+ Mzyll < el lyll;

Moreover, the Banach algebra is said to have a unit if Je € A such that
Vo € A, ex = xe = x and ||e|]| = 1. The algebra is said to be commutative if
for any x,y € A, xy = yx. I shall refer to commutative Banach algebras as CB
algebras.

Note an equivalent defintion of a Banach algebra is that it is a Banach space
which is also a ring, such that azioms (3) and (4) above hold.

Example 8. Given Banach spaces X andY, the space B(X,Y) consisting of
all bounded linear operators from X to Y 1is clearly a Banach algebra, where
multiplication is the ordinary composition of operators.

Example 9. If X is any Hausdor(f space, then the space C (X) consisting of
all bounded continuous functions from X to C forms a CB algebra with a unit,
where multiplication is defined pointwise, and the norm is the sup norm. The
unit of this space is the function which is identically equal to 1. When I get to
the Gelfand representation theorem, an important algebra will be C (M), where
the space M is a compact Hausdorff space.

Definition 10. Let A be a Banach algebra with a unit and let x € A. x is said
to be invertible if 3x~! € A such that xx~! = 7'z = e. I will use, without
proof, the fact that the set of invertible elements in A forms an open set of A.

3 Homomorphisms and Ideals

Definition 11. Let A be a CB algebra. A subspace J of A is said to be an ideal
of A ifVe € A andVj € J, xj € J. (More generally, if A is not commutative,
we require both xj € J and jx € J).

Definition 12. Let A and B be CB algebras. An linear operator ¢ : A — B is
said to be a homomorphism if Vz,y € A, p(xy) = ¢(x)d(y).

Note that if z € ker(¢) and if y € A, then ¢(zy) = ¢(z)p(y) =0-¢(y) = 0.
Hence ker (¢) is an ideal of A.



Definition 13. Let A be a Banach algebra and J an ideal of A, then
e J is said to be proper if J # A

o If J is proper, then J is said to be maximal if for any proper ideal M,
JCM=M-=J.

Lemma 14. Let A be a Banach algebra with a unit and let J be a proper ideal
of A. Then J contains no invertible elements and is not dense in A. Moreover,
its closure J is also a proper ideal of A.

Proof. Suppose x € J and 3z~ € A such that zz=! = e. But .J is an ideal,
hence e € J and so Vm € A, m = em € J. In which case J is not proper. For
the second part, we use the fact that the invertible elements of A form an open
set of A, together with the first part. For the last part, observe that for any
x € A, the mapping y — x -y is continuous on A, and that for any j € .J, we
may write j = nlirr;o jn, where Vn, j,, € J. Hence for any j € J and any = € A,

r-j=a- lim j, = lim x-j, and the last quantity is in .J because .J is closed.
n—oo n—oo

Consequently, J is an ideal of A, and must be proper as J isn’t dense in A. [J

Corollary 15. Every mazimal ideal is closed and every proper ideal is contained
in a maximal ideal.

Proof. Let J be a maximal ideal of A. Then by the previous theorem, we know
that J is a proper ideal of A which contains J, but by maximality, J = J. The
second part is proved by a standard Zorn’s lemma trick. O

Of particular importance to the Gelfand representation theorem are the ho-
momorphisms into C, ie. the multiplicative linear functionals. First note the
following result about linear functionals:

Lemma 16. Let ¢ be a linear functional on a normed linear space X, then:

1. If ¢ is nonzero, then ker (¢) is a mazimal subspace of X (ie. a mazimal
element of the set of proper subspaces of X ).

2. ¢ is continuous iff ker (¢) is closed.

3. If ¢ is a nonzero homomorphism, then ¢(e) = 1.

Proof. Suppose ¢ is nonzero. This immediately gives ker (¢) # X, so ker (¢)
is certainly a proper subpace of X. Also Im(¢) is nonzero subspace of C,
so we have Im (¢) = C. By the first isomorphism theorem, X/ker (¢) = C.
Now suppose S is a subpace of X which contains ker (¢), but there exists a
1-1 correspondence between the subspaces of the quotient space X/ ker (¢) and
the subspaces of X which contain ker (¢), so if S # ker (¢), we must have
X/S = {0}, in which case S = X. Therefore ker (¢) must be maximal, as
required.



Suppose ¢ is continuous. Let y, be a convergent sequence of elements of
ker (¢), say y, — y. But by continuity, 0 = ¢(y,) — ¢ (y), so ¢ (y) = 0, so
y € ker (¢). Hence ker (¢) is closed.

Suppose ker (¢) is closed. I will prove that ¢ is continuous at 0, and hence
continuous on X. If ¢ = 0, then there is nothing to prove, otherwise, Im(¢) = C,
hence Ve € R, 3z, such that ¢(xe) = . Define K. = {z : ¢ (x) = £}. Then
K. ={x: ¢(x — x.) = 0}, and so K. = Ky + z.. But, by hypothesis, Ky is
closed, hence K. is closed. Consequently, for each e € R, {x : ¢ (z) # €} is open,

and
Usi={z:|p () <et = | {z:0(z) # 6}

|6]=¢

is also open. Hence ¢ is continous at 0.

For the last part, observe that ¢(e) # 0 (otherwise Vo € X, ¢(x) = ¢(ex) =
o(e)p(x) = 0 - ¢(x) = 0, making ¢ identically zero), hence ¢(e) = ¢(ee) =
¢(e)¢p(e), and making use of the fact that C is a field, we have ¢p(e) = ec =1. O

Corollary 17. Let A be a Banach space with a unit, and ¢ : A — C a homo-
morphism, then ¢ is continuous and if ¢ # 0, then ||¢|| = 1.

Proof. ker (¢) is a maximal subspace, hence a maximal ideal, hence closed.
Thus ¢ is continuous. It is certainly the case that [[¢|| > 1 as ¢(e) = 1.
Suppose ||¢]| > 1 then Jz € A such that ||z|| < 1 and ¢(x) > 1 but for
all n, ||z"]] < ||z[|™ < 1, though ¢(z") = ¢(z)™ — oo, but ¢ is bounded, a
contradiction. O

3.1 A Spectral Result

An essential result I'll need in showing that the Gelfand representation is norm-
decreasing is the following:

Theorem 18. Let A be a Banach algebra with a unit and ¢ : A — C is a
nonzero homomorphism, then Vx € A, ¢ (z) € o (z), where, by definition, the
spectrum o(z) is given by o(x) = {A € C: Xe — x is not invertible}.

Proof. We have to show that ¢(z)e — x is not invertible. Now ¢(e) —z € ker(¢),
but ker(¢) is a maximal subspace, hence contains no invertible elements. O

We introduce the notion of the spectrum of an element of a unital Banach
algebra because it is related to the spectra of linear operators. Indeed, for each
x € A, define a mapping L, : A — A by L,(y) = xy. It is easily seen that L, is
a bounded linear operator on A, and that the mapping x —— L, is an isometric
isomorphism of A onto a closed subspace of B (A). In fact, the mapping is also
multiplicative, and also x is invertible if and only if L, is invertible.

By the last statement, we have that o(z) = o(L,).

We define the spectral radius r,(z) =sup {|A| : A € o(z)}.

Lemma 19. For any x € A, r,(z) = lim ||a:"||1/" and ro(x) < ||z||.



Proof. Using, without proof, the result that for a linear operator L, r,(L) =
lim ||L"||"/", we have that
n—oo

ro(r) = ro(Ly) = lim [|(L)" " = lim || Lpn|/Y/™ = lim [j2"|*/"
n—0oo n—oo n—oo
But, because A is a Banach algebra, ||z"| < ||z]|", so ry(z) < [|z]|. O

4 The Gelfand Representation Theorem

The Gelfand representation theorem is an omnibus theorem concerning a map-
ping (the Gelfand representation) between a CB algebra A with a unit and an
associated algebra A consisting of continuous functions on the so-called carrier
space M of A. Before we can state the theorem, some definitions are in order.

Definition 20. The carrier space M of A is the space of all nonzero multiplica-
tive linear functionals (ie. homomorphisms from A into the space of scalars),
endowed with the subspace topology which it inherits from the dual space A*,
equipped with the weak-star topology.

Note that 991 truly is a subset of A*, because every element of 91 is a bounded
linear functional, by Corollary 17.

Definition 21. For each x € A, the Gelfand transform of x is the function
& : 9 — C defined by 2(¢) = ¢(x) for all p € M.

By Remark 3, each function & is continuous with respect to the weak-star
topology and again using Corollary 17, we have |% (¢)] = |¢ (z)| < [|9]| |z]| =
|lz||, that is, each function & is also bounded, and hence each & € C (9), the
space of bounded continuous functions from 9t to C.

Theorem 22 (Gelfand Representation Theorem). Let A be a CB algebra with
a unit. Then

1. its carrier space M is a compact Hausdorff space.

2. Vz € A, & is a continuous function on M and the space A = {&:x € A}
is a closed subalgebra of the algebra C (M) of all continuous functions on
m.

3. The Gelfand representation x +— & is a norm-decreasing homomorphism
onto A.

4. Vo eM, é(¢) = 1.

5. Each constant function is contained in A and A separates the points of

M. (that is, Y1, p2 € M with 1 # ¢2, Ii € A, 2(h1) # 2(2))
6. & is invertible in C (M) iff x is invertible in A.



7 @]l = lim [l
8. A is isomorphic to A iff A is semisimple (that is, the intersection of all
magzimal ideals of A is {0}).

Proof. We present the proof in a number of steps. First the fact that 9 is
compact and Hausdorff.

By Theorem 5, the weak-star topology is Hausdorff, hence any (topological)
subspace is also Hausdorff.

Now from Theorem 6, the unit ball B (A*) is weak-star compact, but recall
that each element of 9t has unit norm (as a subset of A* with the operator
topology), so M C B (A*), so we are left to show that 9 is closed (as a closed
subset of a compact set is compact). It suffices to show that if z € 9, then z is
a nonzero homomorphism.Fix z,y € A and € > 0. Define U,y by

Usye ={u € A"+ |(z —u)| () <&,[(z —u)[ (y) <& (2 —u)| (vy) <&}

U,ye is seen to be a weak-star neighbourhood of z, from which we deduce 3¢ €
M N Uypye. Therefore, as ¢ is multiplicative,

z2(wy) — 2(z)2(y) = [2(zy) — d(zy)] + o() [p(y) — 2(y)] + [¢(z) — 2(x)] 2(y)

e+[o(x)le +elz(y)|
e(L+ ol llzll + 1= Tyl
e(L+ lll -+l

|z(zy) — 2(x)z(y)|

VANVAR VAN

consequently, z(xy) = z(z)z(y). Also, by considering the neighbourhood V; :=
{ue A* : |(z —u)|(e) < e}, and an element £ € M NV,

Ae) =1 = [ale) — &(e)] + [£(e) — 1]
= 2(e)—£(©)

so |z(e) — 1| < e. and, z(e) = 1, implying that z is nonzero. So we’'ve shown
that 9 is compact and Hausdorff.
Observe that Vz,y € A and V¢ € 9N,

2y (¢) = o(zy) = d(2)9(y) = 2 () § (¢)
so the Gelfand representation is multiplicative, and Vo, 3 € C,

az + By(9) = dlax + By) = ad(z) + Bé(y) = ai (¢) + B9 (¢)

so is is also linear. In consequence, its image Ais a subalgebra of C (91).
To see it is norm-decreasing, note that

[2]] := sup |& ()| = sup |¢p(z)| < [z
pEM peM



for the last inequality, use results 18 and 19. So we’ve shown the second and
third parts

The fourth part is easy because é (¢) = ¢(e) = 1, as ¢ is assumed to be a
nonzero homomorphism. .

For the fifth part, let A € C. Then V¢ € M, Ae(p) = d(Ae) = A, so each
constant function is contained in A. Moreover, if Vo € A, & (¢1) = & (¢2) then
Vo € A, ¢1(x) = ¢a(x), hence @1 = ¢o, so A does indeed separate the points of
M.

Note that by the Stone-Weierstrass theorem, and from the first, second and
fifth parts of the theorem, A = C (9). (This is precisely the conclusion of the
Stone-Weierstrass theorem).

The remainder of the proof is left as an exercise for the reader. O

The importance of the Gelfand representation theorem is that it gives a
criterion for determining whether or not a given unital CB algebra is isomorphic
to an algebra of bounded continuous functions on a compact Hausdorff space.
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