Sifting the Primes

Gihan Marasingha University of Oxford

18 March 2005

Irreducible forms:

$$q_1(x,y) := a_1 x^2 + 2b_1 xy + c_1 y^2,$$

$$q_2(x,y) := a_2 x^2 + 2b_2 xy + c_2 y^2,$$

$$a_i, b_i, c_i \in \mathbb{Z}.$$

Variety V defined by:

$$V: \begin{array}{l} q_1(x,y) = u^2 + v^2 \\ q_2(x,y) = s^2 + t^2 \end{array}$$

The Sieve of Eratosthenes

2	3	4	5	6	7
8	9	10	11	12	13
14	15	16	17	18	19
20	21	22	23	24	25
26	27	28	29	30	31
32	33	34	35	36	37

Prime numbers $n \leq N$. If n is composite, then it has a prime factor p with

$$p \le \sqrt{n}$$
.

Thus, having struck out multiples of primes $p \leq \sqrt{N}$, we've extinguished all the composite numbers less that N.

The Sieve of Eratosthenes–Legendre

 $\pi(N) := \text{the number of primes } p \leq N.$

$$S(N,r) := \#\{n \leq N : 2,3,5,\ldots,p_r \nmid n\},$$
 where $p_r < N$ is the $r\text{-th}$ prime.

Then we have the relationship:

$$\pi(N) \le p_r + S(N, r).$$

Reason: suppose p counted by $\pi(N)$, so that $p \leq N$. Either $p \leq p_r$ or $p > p_r$. In the first case, $p \in \{1, \ldots, p_r\}$, so p is counted by p_r , otherwise p is counted by S(N, r).

Define

$$N_k := \#\{n \le N : k|n\},\$$

then

$$S(N,r) = N - N_2 - N_3 - \dots - N_{p_r}$$

$$+ N_6 + N_{10} + \dots + N_{p_i p_j}$$

$$- \sum N_{p_i p_j p_k} + \dots \pm N_{p_1 \dots p_r}$$

Now N_k counts $k, 2k, 3k, \ldots qk$ where $qk \leq N < (q+1)k$, so

$$N_k \le \frac{N}{k} < N_k + 1.$$

$$S(N,r) = N - \frac{N}{2} - \frac{N}{3} - \dots - \frac{N}{p_r} + \frac{N}{6} + \frac{N}{10} + \dots + \frac{N}{p_i p_j} - \sum \frac{N}{p_i p_i p_k} + \dots \pm \frac{N}{p_1 \dots p_r} + \text{error},$$

where $|\text{error}| \leq 2^r \leq 2^{p_r}$. We'll write error= $O(2^{p_r})$, where f(n) = O(g(n)) means that there exists a constant C such that $|f(n)| \leq Cg(n)$. In our case C = 1. So

$$S = N \left(1 - \sum_{i \le r} \frac{1}{p_i} + \sum_{i \ne j \le r} \frac{1}{p_i p_j} - \dots \pm \frac{1}{p_1 \dots p_r} \right) + O(2^{p_r}).$$

$$= N \prod_{i=1}^r \left(1 - \frac{1}{p_i} \right) + O(2^{p_r})$$

Notation: $f(n) \sim g(n)$ means that $f(n)/g(n) \rightarrow 1$ as $n \rightarrow \infty$.

Fact: there is a constant C such that

$$\prod_{p < z} \left(1 - \frac{1}{p} \right) \sim C \frac{1}{\log z}.$$

Choose r such that $p_r < \log N \le p_{r+1}$, then

$$S(N,r) = N \prod_{p < \log N} \left(1 - \frac{1}{p} \right) + O(2^{\log N})$$

$$\sim C \frac{N}{\log \log N} + N^{\log 2}$$

$$= O(\frac{N}{\log \log N} + N^{0.7})$$

$$= O(\frac{N}{\log \log N}).$$

Thus:

$$\pi(N) \le S(N,r) + p_r = O(\frac{N}{\log \log N} + \log N)$$
$$= O(\frac{N}{\log \log N}).$$

Theorem (Hadamard, de la Vallée Poussin, 1896).

$$\pi(N) \sim \frac{N}{\log N}.$$

Theorem (Hadamard, de la Vallée Poussin, 1896).

$$\pi(N) \sim \frac{N}{\log N}.$$

Conjecture (Goldbach, 1750). Let N be an even number greater that 2, then

$$N = p + q,$$

for some primes p and q.

How many representations? That is what is

$$\#\{p < N : N - p \text{ is prime}\}$$
?

Heuristically, it's

$$\sum_{p \leq N} \text{prob. that } N - p \text{ is prime}$$

$$\approx \sum_{p \leq N} \frac{1}{\log(N - p)}$$

$$\approx \sum_{p \leq N} \frac{1}{\log N}$$

$$\approx \frac{1}{\log N} \pi(N) \sim \frac{1}{\log N} \frac{N}{\log N} = \frac{N}{(\log N)^2}.$$

Definition: We say $n \in \mathbb{N}$ is a k-almost prime and write that n is P_k if n has at most k prime factors.

Theorem (Chen Jing-Run, 1974). For all sufficiently large even N, one has that

$$N = p + P_2,$$

for p a prime. More precisely, there exists a (computable) constant C such that for all sufficiently large even N,

$$|\{p: p \le N, N-p=P_2\}| > C \frac{N}{(\log N)^2}.$$

Idea: Get a good lower bound for representations $N = p + P_3$ then take away the representations $N = p + p_1p_2p_3$ by deducing an upper bound. What's left are the representations $N = p + P_2$.

Essentially, Chen is interested in calculating a lower bound for the number of 2-almost primes in the set

$$\mathcal{A} := \{ N - p : p \neq N \},$$

much as in our heuristic development of the Goldbach conjecture. Chen's primary innovation in the solution of this problem was the "reversal of rôles", with which he relates $|\mathcal{A}|$ to $|\mathcal{B}|$, where

$$\mathcal{B} := \{ N - p_1 p_2 p_3 : p_1 p_2 p_3 < N, \\ N^{1/10} \le p_1 < N^{1/3} \le p_2 < p_3 \},$$

so that $|\mathcal{B}|$ refers to the number of representations of N-p as the sum of a prime and a product of exactly three primes.

It is an upper bound for the number of primes in \mathcal{B} which is 'taken away' from the number of representations $N=p+P_3$ to provide our lower bound for the number of almost prime in \mathcal{A} .

Conjecture (Twin Primes). There exist infinitely many primes p such that p+2 is prime. Theorem (Chen Jing-Run, 1974). Let h be an even natural number. Then there exist infinitely many primes p such that

$$p + h = P_2.$$

Theorem (Brun, 1912). The sum

$$\sum_{\substack{p\\p+2 \text{ prime}}} \frac{1}{p} + \frac{1}{p+2}$$

is convergent, its value being referred to as Brun's constant.

1995: Thomas Nicely computed prime twins up to 10^{14} , and found a bug in the Intel Pentium!

Conjecture (Euler, 1752). There exist infinitely many primes p of the form $p = x^2 + 1$. Theorem (Dirichlet, 1837). If a, b are coprime integers, then there exist infinitely many primes p of the form

$$p = ax + b$$
.

Hypothesis H (Schinzel, Sierpinski, 1958).

Let $F_1(x), \ldots, F_n(x)$ be distinct irreducible polynomials with integer coefficients, then under a certain condition on the product, there exist infinitely many x such that each $F_i(x)$ is prime.

Eratosthenes-Legendre:

primes in $\mathcal{A}:=\{n:n\leq N\}$. Introduced $N_k:=|\mathcal{A}_k|$ with $\mathcal{A}_k:=\{n\leq N:k|n\}$. Approximated N_k by N/k and found $R_k=N_k-N/k$ is bounded by $|R_k|\leq 1$.

Theorem (Halberstam & Richert, 1972).

Let \mathcal{A} be a set of integers with $|\mathcal{A}| \approx X$. Then, under certain conditions, one can find constants $r \in \mathbb{N}$, κ , $\delta > 0$ and $C \geq 1$ such that

$$|\{P_r: P_r \in \mathcal{A}\}| \ge \delta \frac{X}{(\log X)^{\kappa}} \left(1 - \frac{C}{\sqrt{\log X}}\right).$$

The crucial condition in the determination of the least number of almost primes r is a good bound for the error term R_k . We look for a condition something like:

$$\sum_{d < X^{\alpha}} |R_k| \le C \frac{X}{(\log X)^{\kappa}}.$$

If we can find an estimate with a large value of α , then we may correspondingly use a small value of r.

Theorem (H&R, 1972). Let Q_1 , Q_2 be irreducible quadratic polynomials over the integers such that Q_1Q_2 has no fixed prime divisor, then there exist infinitely many integers n such that

$$Q_1(n)Q_2(n) = P_9.$$

Theorem (Iwaniec, 1972). Let F(x,y) be a quadratic polynomial. Then, under a certain simple condition on the coefficients, the number of primes $p \le N$ represented by F(x,y) is of order $N/(\log N)^{3/2}$.

Theorem (M, 2005). Let q_1 , q_2 be irreducible binary quadratic forms over the integers, then subject to certain conditions on the forms, then there exist infinitely many pairs of integers (n,m) such that

$$q_1(n,m)q_2(n,m) = P_6.$$

Old problem: investigate the variety

$$V: \begin{array}{l} q_1(x,y) = u^2 + v^2 \\ q_2(x,y) = s^2 + t^2 \end{array}$$

Count N(X), the points $(x,y,u,v,s,t) \in \mathbb{Z}^6$ with |x|,|y| < X, and derive asymptotic formula as $X \to \infty$.

In calculating the asymptotic formula, one needs to evaluate quantities of the type

$$\sum_{k < X} |R_k|,$$

as in Halberstam and Richert's theorem.

More Questions:

Extend results of Marasingha? Pairs of irreducible cubic forms? Triples of quadratic forms?

There are sieve methods for calculating $\pi(N)$ in time $O(N^{2/3+\epsilon})$, which don't require the computation of all the primes, but it seems that to compute $\pi_2(N) :=$ the number of twin primes $\leq N$, we need to compute all the twin primes, taking time O(N). Can we improve on this?